Decoherence in Josephson qubits from dielectric loss.
نویسندگان
چکیده
Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctions of small area . With a redesigned phase qubit employing low-loss dielectrics, the energy relaxation rate has been improved by a factor of 20, opening up the possibility of multiqubit gates and algorithms.
منابع مشابه
Decoherence in josephson phase qubits from junction resonators.
Although Josephson junction qubits show great promise for quantum computing, the origin of dominant decoherence mechanisms remains unknown. Improving the operation of a Josephson junction based phase qubit has revealed microscopic two-level systems or resonators within the tunnel barrier that cause decoherence. We report spectroscopic data that show a level splitting characteristic of coupling ...
متن کاملDielectric losses in multi-layer Josephson junction qubits
We have measured the excited state lifetimes in Josephson junction phase and transmon qubits, all of which were fabricated with the same scalable multi-layer process. We have compared the lifetimes of phase qubits before and after removal of the isolating dielectric, SiNx, and find a fourfold improvement of the relaxation time after the removal. Together with the results from the transmon qubit...
متن کاملDecoherence of a Josephson qubit due to coupling to two-level systems
Noise and decoherence are major obstacles to the implementation of Josephson junction qubits in quantum computing. Recent experiments suggest that two-level systems TLS in the oxide tunnel barrier are a source of decoherence. We explore two decoherence mechanisms in which these two-level systems lead to the decay of Rabi oscillations that result when Josephson junction qubits are subjected to s...
متن کاملDecoherence and dephasing in coupled Josephson-junction qubits
We investigate the decoherence and dephasing of two coupled Josephson qubits. With the interaction between the qubits being generated by current-current correlations, two different situations in which the qubits are coupled to the same bath, or to two independent baths, are considered. Upon focussing on dissipation being caused by the fluctuations of voltage sources, the relaxation and dephasin...
متن کامل1/f Noise and Two-level Systems in Josephson Qubits
Quantum state engineering in solid-state systems is one of the most rapidly developing areas of research. Solid-state building blocks of quantum computers have the advantages that they can be switched quickly, and they can be integrated into electronic control and measuring circuits. Substantial progress has been achieved with superconducting circuits (qubits) based on Josephson junctions. Stro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 21 شماره
صفحات -
تاریخ انتشار 2005